Role of CO2 in the cerebral hyperemic response to incremental normoxic and hyperoxic exercise.

نویسندگان

  • K J Smith
  • K W Wildfong
  • R L Hoiland
  • M Harper
  • N C Lewis
  • A Pool
  • S L Smith
  • T Kuca
  • G E Foster
  • P N Ainslie
چکیده

Cerebral blood flow (CBF) is temporally related to exercise-induced changes in partial pressure of end-tidal carbon dioxide (PetCO2 ); hyperoxia is known to enhance this relationship. We examined the hypothesis that preventing PetCO2 from rising (isocapnia) during submaximal exercise with and without hyperoxia [end-tidal Po2(PetO2 ) = 300 mmHg] would attenuate the increases in CBF. Additionally, we aimed to identify the magnitude that breathing, per se, influences the CBF response to normoxic and hyperoxic exercise. In 14 participants, CBF (intra- and extracranial) measurements were measured during exercise [20, 40, 60, and 80% of maximum workload (Wmax)] and during rest while ventilation (V̇e) was volitionally increased to mimic volumes achieved during exercise (isocapnic hyperpnea). While V̇ewas uncontrolled during poikilocapnic exercise, during isocapnic exercise and isocapnic hyperpnea, V̇ewas increased to prevent PetCO2 from rising above resting values (∼40 mmHg). Although PetCO2 differed by 2 ± 3 mmHg during normoxic poikilocapnic and isocapnic exercise, except for a greater poikilocapnic compared with isocapnic increase in blood velocity in the posterior cerebral artery at 60% Wmax, the between condition increases in intracranial (∼12-15%) and extracranial (15-20%) blood flow were similar at each workload. The poikilocapnic hyperoxic increases in both intra- and extracranial blood-flow (∼17-29%) were greater compared with poikilocapnic normoxia (∼8-20%) at intensities >40% Wmax(P< 0.01). During both normoxic and hyperoxic conditions, isocapnia normalized both the intracranial and extracranial blood-flow differences. Isocapnic hyperpnea did not alter CBF. Our findings demonstrate a differential effect of PetCO2 on CBF during exercise influenced by the prevailing PetO2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of elevated oxygen and carbon dioxide partial pressures on respiratory function and cognitive performance.

Hyperoxia during diving has been suggested to exacerbate hypercapnic narcosis and promote unconsciousness. We tested this hypothesis in male volunteers (12 at rest, 10 at 75 W cycle ergometer exercise) breathing each of four gases in a hyperbaric chamber. Inspired Po2 (PiO2 ) was 0.21 and 1.3 atmospheres (atm) without or with an individual subject's maximum tolerable inspired CO2 (PiO2 = 0.055-...

متن کامل

Acceleration of VO2 kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise.

We examined the hypothesis that O2 uptake (VO2) would change more rapidly at the onset of step work rate transitions in exercise with hyperoxic gas breathing and after prior high-intensity exercise. The kinetics of VO2 were determined from the mean response time (MRT; time to 63% of total change in VO2) and calculations of O2 deficit and slow component during normoxic and hyperoxic gas breathin...

متن کامل

Hyperbaric hyperoxia reduces exercising forearm blood flow in humans.

Hypoxia during exercise augments blood flow in active muscles to maintain the delivery of O(2) at normoxic levels. However, the impact of hyperoxia on skeletal muscle blood flow during exercise is not completely understood. Therefore, we tested the hypothesis that the hyperemic response to forearm exercise during hyperbaric hyperoxia would be blunted compared with exercise during normoxia. Seve...

متن کامل

Effect of end-tidal CO2 clamping on cerebrovascular function, oxygenation, and performance during 15-km time trial cycling in severe normobaric hypoxia: the role of cerebral O2 delivery

During heavy exercise, hyperventilation-induced hypocapnia leads to cerebral vasoconstriction, resulting in a reduction in cerebral blood flow (CBF). A reduction in CBF would impair cerebral O2 delivery and potentially account for reduced exercise performance in hypoxia. We tested the hypothesis that end-tidal Pco2 (PETCO2) clamping in hypoxic exercise would prevent the hypocapnia-induced reduc...

متن کامل

The Effect of Adding CO2 to Hypoxic Inspired Gas on Cerebral Blood Flow Velocity and Breathing during Incremental Exercise

Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF duri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 120 8  شماره 

صفحات  -

تاریخ انتشار 2016